New models for predicting thermophysical properties of ionic liquid mixtures.

نویسندگان

  • Ying Huang
  • Xiangping Zhang
  • Yongsheng Zhao
  • Shaojuan Zeng
  • Haifeng Dong
  • Suojiang Zhang
چکیده

Potential applications of ILs require the knowledge of the physicochemical properties of ionic liquid (IL) mixtures. In this work, a series of semi-empirical models were developed to predict the density, surface tension, heat capacity and thermal conductivity of IL mixtures. Each semi-empirical model only contains one new characteristic parameter, which can be determined using one experimental data point. In addition, as another effective tool, artificial neural network (ANN) models were also established. The two kinds of models were verified by a total of 2304 experimental data points for binary mixtures of ILs and molecular compounds. The overall average absolute deviations (AARDs) of both the semi-empirical and ANN models are less than 2%. Compared to previously reported models, these new semi-empirical models require fewer adjustable parameters and can be applied in a wider range of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Playing with ionic liquid mixtures to design engineered CO2 separation membranes.

Ionic liquids have been explored as attractive alternative media for CO2 separation not only due to their low volatility but also due to their highly tuneable nature. Aiming at designing highly efficient liquid phases for flue gas separation and natural gas purification, this work focuses on the use of binary ionic liquid mixtures containing sulfate and/or cyano-functionalized anions. Several m...

متن کامل

Compressed Liquid Densities for Binary Mixtures at Temperatures from 280- 440K at Pressures up to 200 MPa

A method for predicting liquid densities of binary mixtures from heat of vaporization and liquid densityat boiling point temperature (ΔHvap and n b ρ ) as scaling constants, is presented. B2(T) follows a promisingcorresponding-states principle. Calculation of α(T) and b(T), the two other temperature-dependentconstants of the equation of state, are made possible by scaling. As a result ΔHvap and...

متن کامل

Thermodynamic and Thermophysical Properties of the Reference Ionic Liquid: 1-hexyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]amide

This article summarizes the results of IUPAC Project 2002-005-1-100 (Thermodynamics of ionic liquids, ionic liquid mixtures, and the development of standardized systems). The methods used by the various contributors to measure the thermophysical and phase equilibrium properties of the reference sample of the ionic liquid 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide and its mi...

متن کامل

Conductometric and Refractometric Studies of 1-Propyl-3-methylimidazolium Bromide Ionic Liquid in Water + Ethylene Carbonate Mixtures at T = (298.2, 308.2 and 318.2) K

In this work, we determined thermophysical properties such as electrical conductivity and refractive index for 1-propyl-3-methylimidazolium bromide, [PrMIm]Br in ternary mixtures of [PrMIm]Br + ethylene carbonate + water at T = (298.2, 308.2 and 318.2) K and 0.1MPa. Conductometric measurements were carried out for [PrMIm]Br ionic liquid in ethylene carbonate + water solvent mixture in various c...

متن کامل

Molecular Simulation and Theory of Reactions in Supercritical Fluid Mixtures: Ionic Association in Supercritical Aqueous Solutions

Molecular simulation is a powerful tool for understanding and predicting thermophysical properties in systems both at equilibrium and away from equilibrium and composed of molecules ranging in complexity from spherically symmetric monatomic molecules to polymers. In recent years, our research group has applied molecular simulation to the study of supercritical aqueous solutions with the goal of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 40  شماره 

صفحات  -

تاریخ انتشار 2015